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Abstract

Cognitive radio network (CRN) architecture can be efficiently utilized to sup-
port different QoS requirements under variable traffic and channel conditions.
Generally, deterministic radio resource allocation algorithms could significantly
increase the channel utilization as well as the network QoS. In this paper, we
propose an advanced cognitive network resource allocation algorithm for IEEE
802.11 cognitive Wi-Fi networks. By making use of the status of the trans-
mission channels and the traffic conditions, the proposed algorithm effectively
allocates secondary radio resources to improve the overall radio resource utiliza-
tion and the QoS of the CSMA/CA-based networks. To improve the accuracy
and efficiency of the proposed algorithm, a Markov chain model based technique
that estimates the achievable network throughput is employed. Furthermore,
an autoregressive moving average (ARMA) based model is used to predict the
traffic peaks when allocating the channels. OMNeT++ based simulation models

are then developed to analyze the performance of the proposed algorithm. It is
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shown that our predictive resource allocation technique offers higher throughput
and QoS compared to existing resource allocation techniques.
Keywords: ARMA, Cognitive radio networks, Quality-of-service, Resource

allocation, Wi-Fi

1. Introduction

The growing need of radio spectrum for 5G networks demands the develop-
ment of new resource allocation techniques to efficiently utilize and share the
limited radio resources available for different classes of wireless networks [2].
CRN techniques offer promising solutions to efficiently share the available radio
resources among different wireless networks. In traditional CRNs, channels are
borrowed by the secondary networks up on sensing the vacant channels of the
primary networks. It is shown that channel sensing techniques could be less
effective in borrowing additional radio resources compared to cognitive media
access control (MAC) layer-based resource allocation techniques[3]. The latter is
more effective due to the deterministic nature of radio resource allocation where
higher network QoS can be maintained by appropriately scheduling borrowed
channels among the contending secondary networks.

QoS provisioning in traditional sensing-based CR. networks is well studied
in literature. QoS for different services can be maintained by using appropriate
priority levels in the contention period [4, 5, 6, 7, 8]. In such networks, traffic
sources are classified either as real-time or as non real-time traffic, where real-
time traffic sources have stricter QoS bounds. The work of [9] and [10] achieve
QoS provisioning by managing the interference between primary users (PUs)
and secondary users (SUs). In such cases, the SUs are allocated with optimum
channel bandwidth and transmission power, which will maintain their QoS levels
without generating excessive interference to the PUs. The studies in [11] and [12]
maintain QoS by using reservation schemes, which can either reserve channels
or time slots of a channel. The objective is to keep the blocking and packet

dropping probabilities below a specified threshold value. However, none of these
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approaches are able to provide QoS to the end users in a deterministic manner.
They do not consider real time QoS statistics of the network when selecting
channels or power levels for the SUs.

The FCC regulations introduced in 2010 allowed the use of Geo-Location
Database (GDB) as the primary means of determining white space availability
[13]. The GDB is a database that stores, by geographic locations, the permis-
sible frequencies and operating parameters for CR devices to fulfill regulatory
requirements [14]. With a database, part of the complexity associated with the
sensing and the computation is transferred to the core network, reducing com-
plexity and power demand of the end user devices [15]. Also unlike the channel
sensing approach, in a GDB based network, all the channel information is known
a priori. This could allow efficient management of channels to guarantee that
the bandwidth and the QoS requirements are met at the cognitive devices.

A GDB-assisted CR network architecture is proposed in [16], where a new
entity called WhiteNet Local Database (WLD) is introduced to act as a local
spectrum manager. The main tasks of the WLD are to provide spectrum in-
formation retrieved from the GDB to its member access points (APs) and to
resolve contentions among these APs. Spectrum is assigned to APs such that the
interference is kept minimum while the system utility is maximized. Another
channel allocation algorithm for TV White Spaces is proposed in [17] where
channels are assigned in such a way that the total interference is minimized.

The IEEE 802.11 standard is based on the CSMA /CA protocol where trans-
mitting nodes compete for the channel to transmit data [18]. In a contention-
based network, the normalized offered load increases when the packet arrival
rate increases or when the transmission channel capacity decreases due to low
signal-to-noise ratio (SNR). As the normalized load increases, the contention
levels also increase, thereby degrading the network QoS. In such situations, the
network QoS can be improved by allocating extra bandwidth to the network.
Allocating extra transmission bandwidth will reduce the effective normalized
load of the network which could result in increased QoS values. The allocated

extra bandwidth can be removed from the secondary network once the traffic
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level is reduced [3, 19]. Hence, it is necessary to develop advanced resource
allocation techniques for CRNs to effectively share the secondary channels to
improve the overall QoS of secondary networks.

The quality of a wireless channel is determined by the SNR, which is time
variant. This results in a time varying data throughput and QoS levels on a
channel. To tackle the issue of varying SNR levels, the IEEE 802.11 specifi-
cations mandate multiple transmission rates at the physical layer, which use
different modulation and coding schemes [20]. Rate adaptation, which exploits
such multi-rate capability, selects the best transmission rate dynamically based
on the channel quality. Also, a CSMA/CA-based network cannot exploit the
full potential of the transmission capacity at a higher normalized traffic load.
These networks exhibit a saturation throughput when the normalized offered
traffic load exceeds a certain threshold. Here, the network throughput remains
fairly constant due to inefficiencies of the CSMA /CA protocol resulting from the
contention processes. These saturation throughput levels can be approximated
by mathematical models [21, 22]. As the network load increases, the channel
utilization and the network QoS decreases after the network reaches its satura-
tion throughput. In such situations, secondary channels can be allocated for the
duration of the peak traffic to reduce the effective normalized load, potentially
leading to higher network QoS.

In this paper, we introduce a two-tier CRN resource allocation technique,
which is capable of considering many factors such as traffic levels and channel
conditions of the networks when allocating channels. The proposed algorithm
is a substantial extension of our previous works in [3] and [19]. In [3], a priori
channel information obtained from the GDB is used to improve the channel
utilization and the network QoS. Also, it is assumed that the CM has perfect
knowledge of the traffic peak durations of the networks. In [19], real-time QoS
statistics of the networks are utilized to allocate channels to the CRNs in a
proactive manner to improve the QoS levels. In both approaches, the dynamic
channel conditions are not considered but instead the channel capacities are

always assumed constant.
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The algorithm proposed in this work employs the GDB approach to ef-
ficiently allocate secondary channels to the competing 802.11 networks with
varying transmission channel and traffic conditions. The proposed algorithm
outperforms existing solutions in time varying noise and interference conditions
by accurately estimating the saturation channel capacities and traffic peak dura-
tions. The proposed scheme optimally allocates secondary channels to compet-
ing networks to reduce the effect of peak traffic conditions. Also, the proposed
admission control mechanism improves the effectiveness of the resource alloca-
tion and maintains the stability of the networks by identifying target secondary
networks.

The key contribution of this paper is a novel two-tier adaptive resource
allocation technique for CRNs, which can operate in varying SNR and traffic

conditions. Specifically,

e The proposed resource allocator employs a Markov model based estimation
technique to predict the saturation throughput, which is utilized by the

admission control and resource allocation processes.

e The resource allocator also uses an ARMA (1,1) based traffic prediction
model to predict the traffic peak durations when allocating channels to

improve channel utilization.

e The resource allocator combines the admission control decision with sec-
ondary network traffic levels and channel conditions to assign additional

channels in an efficient manner.

2. Proposed Radio Resource Allocation Algorithm

In a CSMA/CA based wireless network, transmitting nodes compete for
the channel before transmitting their data. The winning node transmits data
while other nodes wait for their transmission opportunity in the next contention
period. Network load refers to the total offered load generated by all nodes in

a network, which is expressed in the number of bits per sec. As the network
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Figure 1: Performance statistics with respect to the network load for an IEEE802.11 WiFi
network with 5 hosts for packet sizes of 1,000, 1,500, and 2,000 bytes.

load increases, so do the contention levels. A sudden traffic burst in a node
or several nodes can cause a surge in the network load. Performance statistics
of a typical CSMA/CA network are shown in Fig. 1 for different packet sizes.
When the network load is very low (e.g., normalized load is less than 0.2), the
QoS performance is high. Only several nodes have packets to transmit at a
given time resulting in low contention levels. All the packets generated at the
nodes are transmitted immediately with minimum collision levels, leading to low
packet loss ratio (PLR) and packet delay (PD) values. As the load increases
to between 0.2 — 0.4, there is a sudden decrease of QoS values. Traffic starts
to accumulate in the internal queues and the number of nodes participating in
the contention process increases resulting in a higher collision probability, and
increased PLR and PD values. As the load keeps on increasing, the effective
network throughput is reduced due to high packet losses. As the traffic levels
grow (e.g., during a burst), the transition of the network QoS parameters from
“good” to “worst” happens within a small duration. This transition can be used

as an indication of a network in need of extra capacity/bandwidth. Allocating
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extra bandwidth will increase the network capacity thus reducing the relative
load of the network, which results in increased QoS values.

The CRN model used in this paper utilizes the architecture developed in
[3] and [19]. This CRN architecture is based on the IEEE 802.11 standard
where each secondary network is controlled by an access point (AP) as shown
in Fig. 2. The architecture is based on the GDB CRN architecture where the
GDB contains all the information received from the primary networks about the
channels and their availability depending on geographical locations. The channel
manager (CM) acts as a proxy between the cognitive APs and the geolocation
database. It contains channel information relevant to its control area mirrored
from the GDB. The CM is also responsible for allocating channels to the APs
whenever necessary, depending on real-time network statistics. The APs are
connected to the CM via wired Ethernet links which provide reliable and fast
communication. Let N be the total number of secondary networks controlled
by the CM and N = {1,2,..., N} be the set of all the secondary networks. Let
AP; denote the AP of secondary network i € N.

APs of the competing secondary networks send channel requests as well as
traffic and SNR data to the CM via the backbone network. We assume that
the secondary network terminals can handle multiple channels. Transmission
capacity of a network depends on the total number of allocated channels. Nor-
mally, each AP is allocated with a single primary channel. Additional channels
are allocated when the normalized load in a secondary network increases.

In this work, we propose a two-tier adaptive resource allocation algorithm.
The resource allocator structure presented in Fig. 3 is implemented in the CM
of Fig. 2. It consists of a saturation throughput estimation engine, traffic peak
duration prediction engine, an admission controller, and a channel allocator.
The saturation throughput estimation engine uses the channel SNR. data to
predict the achievable saturation throughput as described in Sec. 2.1. Satura-
tion throughput estimation is an integral part of the proposed algorithm. The
achievable channel capacities of different networks are considered when allocat-

ing radio resources. For the algorithm to function as expected, it is essential
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Figure 2: Cognitive radio network architecture

that we estimate the channel capacities as accurately as possible.

2.1. Saturation Throughput Estimation

In the CM, time is divided into slots of duration Ts. At the beginning of a
time slot, for each requesting network, the throughput estimation engine uses
a predefined packet success threshold to calculate the bit error rate (BER) re-
quired to be maintained. The BER and SNR relationship is then used to deter-
mine the best modulation and coding scheme (MCS) to be used for data trans-
mission. After that, the prediction engine estimates the saturation throughput
using a Markov model as detailed in [21, 22].

Let Tyt denote the slot time duration used in the IEEE 802.11 protocol.
Let 7 be the probability that a node transmits in a T, which is derived using

the discrete-time Markov chain model as [21, 22]:

B 2(1 — 2p)
S A=2p(W 1) +pW (L (2p)™)

where W is the minimum back-off window size ; m is the maximum back-off

(1)

stage in the CSMA/CA process; p is the probability that a transmitted packet

encounters a collision, which is the probability that at least one of the remaining
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Figure 3: Operation of the proposed resource allocation algorithm with admission control

stations transmit in the Ty, duration given by
p=1-(1-7)""", (2)

where n is the number of transmitting nodes in the system. Let P;. be the
probability that there is at least one transmission in the considered T;,;. Since
n nodes contend on the channel and each transmits with a probability of 7, we
have

P,=1-(1-1)" (3)

The probability P, that a transmission is successful is same as the probability

that exactly one station transmits on the channel, conditioned on the fact that
at least one station transmits, i.e.,

_ (n—1) _ (n—1)
p = nt(l—1) _ nt(l—1) . @)
Ptr 1— (1 - T)n

The saturation throughput, defined as the fraction of time the channel is
used to successfully transmit payload bits, is then given by

E[time used for successful transmission in a slot time]
E[length of a slot time]

S = (5)

Since a successful transmission occurs in a Ty;,; with the probability Py, Ps,

the average amount of payload information successfully transmitted in a Ty,
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duration is Py, PsT,, where T, is the packet transmission time. A T, duration
can be either empty with a probability of 1 — P;,. or has a successful transmission
with a probability of P;,.Ps or contains a collision with a probability of P,.(1 —
P,). Substituting these values in (5) yields:

PSPtTTp

S = 6
(1 - P:fr)J+PtrPsTb+Ptr(1 - PS)TC’ ( )

where o is the duration of an empty Ty;,; duration. Let Tj, be the average time

the channel is sensed busy because of a successful transmission. We then have:
Ty =Ty +T,+Tsirs +Ts +Tack +Tpirs +Ts, (7)

where Ty is the packet header duration, Tsypg is the short inter-frame space, T
is the propagation delay, Thck is the duration of the acknowledgement packet,
and Tprps is the DCF inter-frame space. If we denote by T. the average time

the channel is sensed busy by the stations during a collision, then
T.=Tu +T,+Tprrs + Ts. (8)

2.2. Admission Control

After the capacity estimation by the prediction engine, admission control is
carried out based on the estimated saturation throughput values and the net-
work load values of each requesting network. This mechanism ensures that the
radio resources are allocated only to the requesting secondary networks that can
utilize them successfully to improve their throughput and QoS. Secondary net-
works severely affected by high SNR. variations or traffic levels, whose stability
cannot be reached by allocating extra resources, are omitted from the allocation
process, which improves the effectiveness of the resource allocation process and
the utilization of secondary channels.

Suppose that for AP; (i € N), the saturation throughput achievable on
channel j at time ¢ is RS, ;[t]. In a general situation, when the total number of
allocated channels per network is n (n > 1 including the secondary channels),

the combined saturation throughput RC;[t] and the effective normalized network

10
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load ENL;[t] of AP; are given by (9) and (10) respectively:

RC;t] = Zn: RS; ;1] (9)
ENL[f] nLR[ﬂ] (10)

where R;[t] is the 802.11 transmission rate based on the chosen MCS index.

Let L;[t] be the network load. In the situation where L;[t] < RC;[t], i.e.,
ENL;[t] < E;[t], where E;[t] is the normalized saturation throughput or the
channel efficiency, the combined channel capacity is adequate to cater for the
load of the network. Therefore allocating secondary channels to the network i
will be beneficial. However, in the scenario where L;[t] > RC,[t], i.e., ENL;[t] >
E;[t], the combined channel capacity is still not sufficient to handle the network
load. Here, the backlog traffic can keep on increasing and the network will
become unstable. The channel allocation will thus be less beneficial. Allocating
the channels to another network that satisfies the former condition will increase
the channel utilization as well as the network QoS. This observation is used to
implement admission control at the CM.

At time t, for a requesting AP;, we define admission control decision as

1, if ENL;[t] < E;[t]
7it] = (11)

0, otherwise.

2.8. Weighted Queue Length based Resource Allocation with Admission Control
(WQL-AC)

After saturation throughput estimation and admission control, the proposed
weighted queue length based with admission control (WQL-AC) algorithm al-
locates resources based on the estimated saturation throughput levels, queue
length data of the primary channel of the transmitting hosts in the requesting
networks, and the admission control decision. The resource allocation algorithm

uses a weighted queue length based approach for channel allocation which is

based on the modified largest weighted delay first (M-LWDF) algorithm [23].

11
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WQL-AC can take advantage of the SNR. variations by giving some form of tem-
porary priority to the networks with better SNR performance. Since channel
throuthput levels of different networks vary in time in an asynchronous manner,
the QoS of all secondary networks can be improved compared to the allocation
schemes that do not take the channel conditions into account. We take a cross-
layer approach here by considering the both traffic statistics and the physical
channel conditions.

Suppose the number of available secondary channels at a given time instant
is M. We consider a resource limited situation where M < N. Let Reg;[t]
indicate whether or not AP; is requesting for a secondary channel at the time
t, i.e.

) )

1, if network i is requesting,
Regq;[t] = (12)

0, otherwise.

Let Q;[t] be the mean primary channel traffic queue length of the cognitive
hosts of network 7. For each time slot, the admission controlled weighted queue

length WQ;[t] for each secondary network is calculated as:

WQilt] = Req;[t]:[t]Q:[t]RC;[t]. (13)
Let j be the network with largest WQ;[t] value where

WQ;[t] = max{WQ;[t]}, Vi e N. (14)

A vacant channel is allocated to network j and the process is repeated until all

the channels are allocated or all the requesting networks are served.

2.4. Traffic Peak Duration Prediction

In real world scenarios, there is a delay associated with changing the sec-
ondary channel. When a secondary channel is needed, the APs have to connect
to the CM to request a vacant channel for their communication. There is a
communication delay T,,,, associated with this process. Once the AP receives

the secondary channel information, it has to disseminate that information to the

12
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Figure 4: Flowchart of the proposed resource allocation algorithm with admission control

cognitive hosts via the Wi-Fi beacon. Typically, the Wi-Fi beacons are broad-
casted periodically at every Tpeqcon seconds. Once the hosts receive the channel
information, they reconfigure their physical layer to transmit on the newly as-
signed channel. There is a delay of Ti,n. associated with this re-configuration
process [24]. The total delay associated with acquiring a secondary channel

from the CM is thus:
Td - Tco7n + Tbeacon + Ttune- (15)

During this period the hosts cannot transmit on the allocated secondary channel.

In absence of peak duration information, the secondary channels are gener-
ally allocated either for a fixed duration or for a random period, which could
affect the QoS of the primary and secondary networks by increasing the number
of channel switchings required to cover a traffic peak [3]. To allocate channels in
a deterministic manner we introduce traffic peak duration prediction technique

using an auto regressive moving average (ARMA) model. Traffic peak duration

13
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prediction allows the algorithm to minimize the number of secondary channel
allocations required to support the traffic peaks. This strategy improves the
channel utilization as well as the QoS values. The channel allocation delay is
not a direct input to the proposed resource allocation algorithm. However, the
algorithm is able to reduce the number of channel switchings by appropriately
allocating channels considering the predicted traffic peak durations.

Channels are allocated to the winning secondary networks for the predicted
duration of the traffic peak. The channel durations are predicted based on pre-
vious traffic data using an on-line ARMA model with lag values 1,1 to compute
the 1 step ahead prediction of the traffic peak duration. ARMA(1,1) model has
been used in [25] to predict Internet traffic with high accuracy.

Parameter estimation is difficult for time-varying wireless channels with het-
erogeneous wireless traffic. Recursive techniques can be used to estimate the
parameters of the time series model as they do not require a long observation
history compared to off-line estimation methods. A pseudo-linear regression
recursive identification technique can handle a wide range of time series models
including auto regressive (AR), moving average (MA), and ARMA. Let y(t) be
an observation of a random process Y at discrete time ¢. To predict y(t + 1),
the time series data y(t — 1), ...,y(1) are collected.

Recursive parameter estimation methods have the general form of [26]
y(t) = 7 ()0 + €(t), (16)

where the repressor ¢ (t) depends on the past data and the model structure, ¢
is a system parameter vector, and €(t) is the prediction error of estimation. For
the ARM A(n,,n.) model where n, and n. respectively denote the orders of

autoregressive and moving average parts, ¥ (t) and 6 are given by

W(t) = [_y(t_n,...,—y(t—na), e(t—1),....e(t —ne) : (17)
9=[a1, ciry Gnay Cly, -.e, chT- (18)

Here, €(t) is given by
e(t) =y(t) —9(t) (19)

14



245

250

255

260

where §(t) is the predicted value of the process Y at the time ¢ as
9(t) =T (£)0(t - 1). (20)
The parameter estimate é(t) is calculated by modifying the last calculated esti-
mate (t — 1) as
0(t) = 0(t — 1) + K(t)e(t) (21)

where

K(t) = P(t)D(t) (22)

and
Pt —1)U(®)¥T ()Pt —1)
A+ UT(E)P(E — 1)U (¢)

P() :% Pt—1)- (23)

with forgetting factor A. For the initial values, it is common to set é(()) =0and
P(0) = pI, where p is a sufficiently large number [25].

Fig. 4 details the channel allocation process for a network with two PHY
interfaces, i.e., one primary channel and one secondary channel. Let N’ be
the number of requesting networks. First the achievable saturation throuthput
levels of all the requesting secondary networks are estimated and the admission
control decision +; is carried out for each requesting AP;. After the admission
control process, the requesting APs are ranked according to the weighted queue
length and the vacant channels are allocated to the highest ranking APs. The
channels are allocated to the winning AP}, for a duration of Tjeqk,x, Which is
the predicted peak duration of AP using the ARMA prediction engine. After

the Tpeqr, i duration, the allocated channel is removed from the AP;.

2.5. Traffic Load Distribution between Primary and Secondary Channels

Once a network is assigned with a secondary channel, how to distribute
the traffic load between primary and secondary channels is an important issue.
The primary channel is always available to the network to transmit whereas
the secondary channel is only available for a pre-defined time duration. In
the proposed architecture, each host maintains two traffic queues, one for the

primary channel and the other for the secondary channel as shown in Fig. 5. The

15
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Figure 5: Proposed proportional traffic distribution mechanism for the CR-Host

task of distributing the packets between these two queues is performed at each
node by considering the current primary queue length QLp[t], the secondary
queue length QLg[t], the secondary channel allocation duration T4[t], the packet
departure rates of primary and secondary queues Rp p[t] and Rp g[t], and the
packet arrival rate RA[t].

The packets are distributed to the secondary queue in a proportional manner
based on the maximum QL pmax and the current length of the primary queue.
That is,

QLplt]

RA,S,pTop [t] = RA[t]QT (24)

For the secondary channel, the current queue length depends on the old

queue length and the departure and arrival rates as:
QLs[t] = QLs[t — 1] + RA,S[t]TS — RD,S[t]TS. (25)

Packets inserted to the secondary queue must be transmitted before the

secondary channel allocation expires. Therefore,
QLs[t] < Rp s[t]Talt]- (26)

From (25) and (26),

Rasl < T2t T 2 QPsU 2 ] (21)

R 4.s[t] is non-negative because once a packet is inserted to the queue it

16
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cannot be taken back. Therefore, the maximum value of R4 g[t] is

Rasmaclt] = max { Rps[t)(Ts + T‘;Et]) — QLs[t — 1] ’ 0}. (28)
From (24) and (28),
Ra.st] = min{Ra s proplt]; Ba,smax[t]}- (29)

3. Simulation Results

To simulate the proposed channel allocation mechanism, OMNeT++ version
4.6 and INET framework version 2.5.0. are used. Moreover, the IEEE802.11g
Wi-Fi host and IEEE802.11g Access point modules in INET are modified to

implement cognitive capabilities as described in [19].

3.1. Accuracy of the Saturation Throughput Estimation and Peak Duration Pre-
diction

Fig. 6(a) compares the saturation throughput levels obtained for different
channel SNR values using the estimation method in[21, 22] and OMNeT++
simulations. The Bianchi’s estimation method in [22] and [23] uses a Markov
chain based analytical model to estimate the saturation throughput of the
IEEE 802.11 protocol. The results obtained form that model is compared with
the results obtained from the standard IEEE 802.11 model available in OM-
NeT++/INET. The IEEE 802.11 model in OMNeT++ is discrete event based,
where the model is implemented as an ordered sequence of well-defined events.
The accuracy of the IEEE 802.11 models available in OMNeT++ has been ver-
ified by the results obtained from real world Wi-Fi test beds [27]. It can be
seen from the figure that the estimation error is less than 2.5% for all SNR. val-
ues. The ability to accurately estimate the saturation throughput levels for each
secondary network enhances the accuracy of the channel allocation algorithm.
Fig. 6(b) shows the peak duration prediction error for several consecutive peaks.
It can be seen that the estimation error is always less than 10% with an average

around 4.5%.
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Figure 6: Prediction accuracy of the Bianchi’s method and the ARMA(1,1) model

3.2. Performance FEvaluation of the Channel Allocation Algorithm

Network simulation is used to evaluate network performance under varying

SNR and load conditions. Table 1 summarizes the key simulation parameters of

the simulation model. Different versions of the proposed algorithm are compared

with two existing channel allocation algorithms. Most of the existing channel

allocation algorithms proposed or investigated for cognitive radio networks use

the traditional channel sensing approaches. Since there are special provisions

in those protocols to accommodate channel sensing, they are not directly appli-

cable to the GDB-based CRN architecture. The number of available resource
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allocation algorithms targeted at GDB-based CRNs is very limited. As such,
we have selected two MAC layer-based channel allocation algorithms available
in literature, which have been proposed for GDB-based CRN network architec-
ture and compared those algorithms with our proposed algorithm, which is also
introduced for the GDB-based CRN architecture. The algorithms selected are
referred to as the QL (Queue Length) [19] and B-SAFE (distriButed Spectrum
Allocation For whitespacE) [16]. The results generated by the QL and B-SAFE
are verified by comparing with the original papers [19, 16].

The performance data are obtained for the following resource allocation al-

gorithms:

e B-SAFE [16]: The channel allocation is implemented based on the ag-
gregated poverty line of each AP.

e QL [19]: The channel allocation is carried out based on the mean queue
lengths of the transmitting nodes. The queue length can be used as an
indication of QoS degradation. The channel allocation is performed in
a proactive manner based on the mean queue length of the transmitting
nodes. It only considers the traffic conditions but not the transmission
channel conditions. The channels are allocated for a fixed duration of Ts

= 500ms and the algorithm is executed every 500ms.
e WQL-AC-PP - The proposed algorithm described in Sec. 2.

e WQL-PP - The algorithm described in Sec. 2 without the admission

control mechanism.

e WQL-AC - The algorithm described in Sec. 2 without the peak pre-
diction mechanism. The channels are allocated for a fixed duration of

Ts = 500ms and the algorithm is executed every 500ms.

Initially we run the simulations for three secondary networks. In each sec-
ondary network, traffic is simulated by using a base load and a peak load. The
nodes normally transmit at the base load. However, traffic peaks appear oc-

casionally, increasing the total offered load. In such situations the total load
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Table 1: Simulation parameters

Number of cognitive APs/secondary | 3,6,9
networks (V)

Number of cognitive hosts per AP 5

Number of secondary channels (M) 2,4,6

Packet size 2,000 Bytes

Network peak size (normalized) uniform  (0.1,0.2),  uniform

(0.2,0.3), uniform (0.1,0.3)

Network peak inter-arrival time exponential (10)s
Mean SNR level uniform (14,25) dB
Operating frequency 2.4 GHz

Channel bandwidth 20 MHz

Fading model Rician fading

No. of PHY interfaces per node 2

802.11g data rates used (Mbps) 6,9,12,18,24, 36, 48, 54
Channel change delay (T) 0,100, 300 ms

Time slot duration (75) at CM 500 ms

of the network is the sum of the base load and the peak load. Two simulation
scenarios are implemented. In the first scenario, the normalized traffic peak is
distributed uniformly between 0.1 — 0.2 for all three secondary networks. In
the second scenario, the traffic peaks are distributed differently for the three
networks. For network 1, the peak is uniformly distributed between 0.1 — 0.2,
for network 2 between 0.2 — 0.3, and for network 3 between 0.1 — 0.3. These
values are summarized in Table 2. Simulation of the SNR behavior is conducted
independently for these networks. Fig. 7(a) shows the simulated behavior snap-
shots of the network load of the three networks for a normalized base load of
0.5. Fig. 7(b) shows the SNR levels of network 1.

Fig. 8 plots the performance of network 1 for the scenario 1 as mentioned

in table 2 for B-SAFE, QL, WQL-PP, and WQL-AC-PP algorithms along with
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Table 2: Traffic peak distribution for the two simulation scenarios

Scenario 1 Scenario 2

Network 1 | uniform (0.1 — 0.2) | uniform (0.1 — 0.2)
Network 2 | uniform (0.1 — 0.2) | uniform (0.2 — 0.3)
Network 3 | uniform (0.1 — 0.2) | uniform (0.1 — 0.3)

the data when no secondary channels are allocated. The figure clearly shows
the effectiveness of secondary channel allocation in dealing with the peak traffic
load. In particular, at lower load levels of 0.1 — 0.2, the QL yields higher
throughput than WQL-PP or WQL-AC-PP despite the slightly higher collision
levels of the QL compared to the WQL-PP and WQL-AC-PP. At lower load
levels, the saturation network capacity is always sufficient to transmit all the
generated packets all the time. The queue lengths are generally very low and
as a result, the effect of the saturation throughput dominates the weighted
queue length values. However, the saturation throughput has a small impact
on representing the capacity requirements of the networks accurately in lower
load conditions. In such situations, the queue length represents the capacity
demand of the networks better than the weighted queue length. Therefore, QL
offers higher throughput than WQL-PP and WQL-AC-PP.

However, as the load increases, the WQL-PP and the WQL-AC-PP start to
outperform the QL. Here, the saturation throughput achievable on a secondary
channel is not always sufficient to cater for the load demands of all secondary
networks. Considering the saturation throughput when allocating channels gives
better results than only relying on the queue length. The WQL-AC-PP algo-
rithm offers the best results thanks to the admission control mechanism. Here,
a requesting AP is only considered in the channel allocation process at the CM
only if the allocated channel can cater for the excess traffic load demand. The
admission control mechanism prevents the networks served with the secondary
channels from being driven into extreme regions in the normalized load axis.

Therefore, the WQL-AC-PP reduces the contention levels and improves the
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Figure 8: QoS data of network 1 for the three channel allocation mechanisms in scenario 1.

QoS and throughput. At higher load levels of 0.5 — 0.6, the WQL-AC-PP is
capable of achieving about 30% higher throughput than that of the QL algo-
rithm. Interestingly, at all load levels, the B-SAFE algorithm yields the worst
performance among the compared algorithms. The B-SAFE is not capable of
considering real-time network QoS statistics and saturation channel capacities.
Hence, it performs worse than the other algorithms.

When the PLR and the PD metrics are considered, as shown in Fig. 8, at
lower load levels, all three mechanisms perform similarly. The network load is
much lower than the saturation network capacity and all the generated pack-
ets are promptly transmitted without any delays or queue buildup, resulting

in lower PLR and PD levels. As the network load grows, the contention levels
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Figure 9: Performance data of the three networks for the three channel allocation mechanisms

in scenario 2.

increase and not all the packets from higher layers can be transmitted, which
results in a backlog of traffic. As a result, the PD and PLR levels are increased.
Again, WQL-PP and WQL-AC-PP perform better than the QL algorithm be-
cause the former can allocate the secondary channels to the competing networks,
which can utilize the channels efficiently. Increased channel utilization results
in lower PLR and PD levels compared to the QL. WQL-PP and WQL-AC-PP
perform better because they take in to account the SNR levels of the networks
and the resulting network capacity when allocating channels. The proposed ad-
mission control mechanism can filter out the requesting networks whose effective

loads are too high to be satisfied by allocating an extra secondary channel. The
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admission control mechanism allows the secondary channels to be utilized more
effectively resulting in better QoS performance in the networks served. At higher
load levels of 0.5 — 0.6, the WQL-AC-PP algorithm gives about 55% lower PLR.
values and 25% lower PD values than those of the QL algorithm. Again, the
B-SAFE algorithm performs even worse than the QL because the B-SAFE is
not capable of considering real-time QoS data of the networks, where as QL
performs channel allocation based on the network load levels.

Fig. 9 shows the throughput statistics for scenario 2 for all three networks.
The peak traffic load in network 2 has a higher average value than that of the
other two networks. Again, at lower load levels of 0.1 —0.2 the QL performs bet-
ter due to the reasons described above. However, as the network load increases,
the WQL-AC-PP algorithm deals with the peak traffic efficiently and offers a
higher throughput. The WQL-AC-PP achieves higher performance thanks to its
ability to consider channel conditions when allocating channels and the admis-
sion control mechanism, which filters out unstable networks from the channel
allocation process. It can be seen from the figure that the throughput by the
QL mechanism saturates at higher load levels. In this case, the WQL-AC-PP
algorithm yields about 20% higher throughput than that of the QL for all three
networks.

To evaluate the effect of the peak duration prediction mechanism on the
overall performance, we compare the WQL-AC-PP with the WQL-AC for traf-
fic distribution scenario 1 with different T,; values. The results are presented in
Fig. 10. It can be seen that the channel switching delay has a small effect on
the WQL-AC-PP algorithm. The WQL-AC-PP algorithm can predict the next
peak duration and assign the channels accordingly, resulting in a very few num-
ber of channel switchings. On the other hand, the WQL-AC allocates channels
in a slotted manner, causing many possible channel switchings to cover a traffic
peak. The higher rate of channel switching reduces the channel utilization and
as a result, the throughput and the QoS values are compromised. Also, it can
be seen that when Ty = 0, i.e., when there is no channel switching delay, the

WQL-AC performs marginally better than the WQL-AC-PP algorithm. This
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Figure 10: Performance data of WQL-AC-PP, WQL-AC, and QL for different channel switch-

ing delay values.
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is because the slotted nature of the WQL-AC allows it to capture the state of
the secondary networks better than the WQL-AC-PP whose allocation period
is much longer. But with the introduction of the channel switching delay, per-
formance of the WQL-AC degrades due to the lower channel utilization caused
by the frequent channel switchings. Also it can be seen that the QoS levels
decrease as the channel switching delay increases. Increased channel switching
delay results in a lower channel utilization, which contributes to packet queue
build-up and increased contention levels. As a result, the QoS levels are de-
creased. The channel allocation delay is not a direct input to the WQL-AC-PP
algorithm. However, the algorithm is able to reduce the number of channel
switchings by appropriately allocating channels considering the predicted traffic
peak duration.

Let P,z be the total offered packets during the allocation period and let
Pix be the total transmitted packets on both channels during the allocation
period. To analyze the effectiveness of the channel allocation algorithms under
consideration, we define a new parameter called the allocation efficiency factor

Teff aS:

= 30
Neft P (30)

off
Fig. 11 shows the values of n.g by the four allocation mechanisms for the sim-
ulation scenario 1. A higher value of n.g denotes the ability to successfully
transmit a higher portion of the offered traffic when a secondary channel is
allocated. This results in less backlogged traffic, lower contention levels, and
improved QoS of the network. It can be seen that the QL performs better than
the B-SAFE as the load increases thanks to the ability of QL to allocate chan-
nels based on the network load levels. The WQL-PP can improve the allocation
effectiveness over the B-SAFE and the QL. The allocation can be further en-
hanced by implementing an admission control as in the WQL-AC-PP because
the admission control guarantees that only the networks with a combined satu-
ration throughput sufficient to transmit all the generated traffic are considered

in the resource allocation process.

To evaluate the scalability of the proposed algorithm, we compare the WQL-
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Figure 11: Allocation effectiveness in scenario 1.

AC-PP and the QL algorithms for scenario 1 by varying the number of CRNs
and available secondary channels. The normalized base network load is set at
0.4. As seen in Fig. 12, the throughput of the WQL-AC-PP improves slightly
as the number of vacant channels increases and decreases slightly as the number
of networks increases. However, these variations are marginal compared to
the performance of the QL mechanism. Again, the WQL-AC-PP is capable
of offering relatively constant throughput compared to the QL thanks to the

integrated admission control mechanism.

3.3. Performance of the Traffic Distribution Techniques for the Two Queues.

We compare our proposed proportional load distribution mechanism with an
equal load distribution mechanism when allocating traffic load to the secondary
channel. Fig. 13 shows that the PLR and PD values are similar in the low load
conditions. However, as the load increases, the proposed proportional algorithm
offers lower PLR and PD, thus exploiting the secondary channel more efficiently.
The proportional load distribution mechanism is capable of distributing the
traffic between the primary channel and the allocated secondary channel in
an efficient manner by considering the secondary channel allocation duration,
primary and secondary queue lengths, and packet arrival and departure rates.

This also helps to effectively vacate the secondary channel when the allocation
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duration expires.

4. Conclusion

Cognitive radio networks are a promising solution to deal with the growing
demand for radio spectrum. QoS provisioning and maximizing the utilization
of the secondary channels are important issues when allocating channels. This
paper presents an advanced channel allocation algorithm that maximizes the
utilization of the secondary channels while improving the QoS under varying
SNR and traffic conditions in cognitive Wi-Fi networks. To further enhance the
performance of the algorithm, an admission control and traffic prediction mech-
anisms are also incorporated. The proposed channel allocation mechanism is
compared with existing queue length-based allocation mechanisms. Simulation
results demonstrate the clear advantages of the proposed cross-layer cognitive
resource allocation algorithm.

For the proper operation of the algorithm, the CRN should be able to con-
tinuously measure and assess the network traffic volumes and channel condi-
tions. Such information should be continuously transferred to the CM, incur-

ring additional transmission overhead. However, this overhead is outweighed
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Figure 13: Traffic distribution between the two packet queues.

by the performance improvement gained. It is essential that continuous traffic
and SNR measurement is reliably implemented, and the measurement data are
reliably transferred to the CM for processing. This is not generally done at
standard wireless networks but in cognitive networks traffic measurements, and
situational information is implemented as a general feature. The proposed re-
source allocation algorithm is targeted at cognitive Wi-Fi networks. Saturation
throughput estimation is a critical feature of the algorithm. The algorithm can
be extended to other network types with different MAC protocols. However,
it is important to employ proper methods to accurately estimate the actual
capacities of the channels to improve the accuracy of the resource allocation
algorithm. Additional tasks proposed in the CRN algorithm are not part of the
existing standards. Hence, it is necessary to introduce a convergence layer on

top of the existing standard when implementing a cognitive Wi-Fi network.

5. Further Research Directions

The proposed architecture assumes the information sourced from the GDB
is 100% accurate. It would be useful to find out the effect of the accuracy of the
information on the system performance. Also, obtaining the primary network

information for the GDB should be studied. It would be also interesting to
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find out how to fine tune the proposed algorithm to support multiple traffic

classes such as VoIP with different QoS requirements. In addition, a study on

energy efficiency of the proposed algorithm compared to that of a sensing-based

algorithm would be useful for implementation purposes.
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